Improved scene identification and object detection on egocentric vision of daily activities
نویسندگان
چکیده
This work investigates the relationship between scene and associated objects on daily activities under egocentric vision constraints. Daily activities are performed in prototypical scenes that share a lot of visual appearances independent of where or by whom the video was recorded. The intrinsic characteristics of egocentric vision suggest that the location where the activity is conducted remains consistent throughout frames. This paper shows that egocentric scene identification is improved by taking the temporal context into consideration. Moreover, since most of the objects are typically associated with particular types of scenes, we show that a generic object detection method can also be improved by re-scoring the results of the object detection method according to the scene content. We first show the case where the scene identity is explicitly predicted to improve object detection, and then we show a framework using Long Short-Term Memory (LSTM) where no labeling of the scene type is needed. We performed experiments in the Activities of Daily Living (ADL) public dataset (Pirsiavash and Ramanan,2012), which is a standard benchmark for egocentric vision. © 2016 Elsevier Inc. All rights reserved.
منابع مشابه
Recognition of Activities of Daily Living with Egocentric Vision: A Review
Video-based recognition of activities of daily living (ADLs) is being used in ambient assisted living systems in order to support the independent living of older people. However, current systems based on cameras located in the environment present a number of problems, such as occlusions and a limited field of view. Recently, wearable cameras have begun to be exploited. This paper presents a rev...
متن کاملEgocentric Activity Recognition Using Bag of Visual Words
This paper presents an approach for recognizing activities using video from the egocentric setup. In this approach instead of using intermediate setup like object detection, pose estimation, modeling spatial distribution of visual words is implemented. The interactions are encoded by using Histogram oriented Pairwise Relation named (HOPR) between the visual words, orientations and alignments. A...
متن کاملNext-active-object prediction from egocentric videos
Although First Person Vision systems can sense the environment from the user’s perspective, they are generally unable to predict his intentions and goals. Since human activities can be decomposed in terms of atomic actions and interactions with objects, intelligent wearable systems would benefit from the ability to anticipate userobject interactions. Even if this task is not trivial, the First ...
متن کامل3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملCompressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard
Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 156 شماره
صفحات -
تاریخ انتشار 2017